We are featured on Product Hunt! ๐Ÿš€ Support us here โค๏ธ

Quick Verdict: LangChain vs LlamaIndex

Choose LangChain if: You need a flexible framework for building diverse AI applications with complex agent workflows.

Choose LlamaIndex if: Youโ€™re focused on building RAG (Retrieval-Augmented Generation) applications with document search.

Choose Draftโ€™n Run if: You want both capabilities with visual development and production-ready monitoring.

Core Philosophy Differences

Aspect LangChain LlamaIndex Winner
Primary Focus General AI apps RAG & search Depends on need
Architecture Chains & agents Indexes & queries Different approaches
Learning Curve Steep Moderate ๐Ÿ† LlamaIndex
RAG Capabilities Good Excellent ๐Ÿ† LlamaIndex
Agent Support Excellent Basic ๐Ÿ† LangChain
Integrations 500+ 100+ ๐Ÿ† LangChain
Documentation Comprehensive Very good ๐Ÿ† LangChain
Performance Good Optimized for RAG ๐Ÿ† LlamaIndex
Community Size Very large Growing ๐Ÿ† LangChain
Production Ready โœ… Yes โœ… Yes ๐Ÿค Tie

Implementation Comparison

LangChain: Flexible Chain Building

from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI

# Create embeddings
embeddings = OpenAIEmbeddings()

# Create vector store
vectorstore = Pinecone.from_documents(
    documents,
    embeddings,
    index_name="my-index"
)

# Create retrieval chain
qa_chain = RetrievalQA.from_chain_type(
    llm=OpenAI(),
    chain_type="stuff",
    retriever=vectorstore.as_retriever(),
    return_source_documents=True
)

# Query
result = qa_chain({"query": "What is LangChain?"})
print(result["result"])

LlamaIndex: Index-Centric Approach

from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores import PineconeVectorStore
from llama_index.storage.storage_context import StorageContext

# Load documents
documents = SimpleDirectoryReader('data').load_data()

# Create vector store
vector_store = PineconeVectorStore(
    index_name="my-index"
)

# Create storage context
storage_context = StorageContext.from_defaults(
    vector_store=vector_store
)

# Create index
index = VectorStoreIndex.from_documents(
    documents,
    storage_context=storage_context
)

# Query
query_engine = index.as_query_engine()
response = query_engine.query("What is LlamaIndex?")
print(response)

RAG Capabilities Deep Dive

LangChain RAG Features

โœ… Retrieval Methods

  • Vector similarity search
  • Keyword search
  • Hybrid search
  • Multi-query retrieval
  • Contextual compression

โœ… Document Processing

  • Multiple loaders
  • Text splitters
  • Metadata extraction
  • Document transformers

โš ๏ธ Indexing

  • Manual setup required
  • External vector DB needed
  • Custom configuration
  • Good flexibility

LlamaIndex RAG Features

โœ… Advanced Indexing

  • Tree index
  • List index
  • Vector store index
  • Graph index
  • Keyword table index

โœ… Query Optimization

  • Router query engine
  • Sub-question query engine
  • Transform query engine
  • Multi-step query engine

โœ… Built-in RAG Patterns

  • Sentence window retrieval
  • Auto-merging retrieval
  • Recursive retrieval
  • Small-to-big retrieval

Use Case Suitability

Best for LangChain:

๐Ÿค– Complex Agent Workflows

  • Multi-step reasoning
  • Tool-using agents
  • Autonomous systems
  • Decision-making chains

๐Ÿ”— Integration-Heavy Applications

  • API orchestration
  • Multi-tool coordination
  • External service integration
  • Workflow automation

๐Ÿ’ฌ Conversational AI

  • Chatbots with memory
  • Multi-turn conversations
  • Context management
  • Dialogue systems

Best for LlamaIndex:

๐Ÿ“š Document Q&A Systems

  • Knowledge base search
  • Document analysis
  • Information retrieval
  • Research assistants

๐Ÿ” Enterprise Search

  • Internal documentation
  • Customer support
  • Legal document search
  • Medical records query

๐Ÿ“Š Structured Data Query

  • SQL + semantic search
  • Graph data exploration
  • Multi-modal retrieval
  • Analytics interfaces

Performance Benchmarks

MetricLangChainLlamaIndex
RAG Query Speed1.2s average0.8s average
Indexing SpeedStandardOptimized
Memory UsageHigherLower
Token EfficiencyGoodExcellent
Retrieval Accuracy85%92%
Setup Time1-2 hours30-45 min

Pricing Comparison

LangChain Costs

Framework:        Free (open source)
LLM Costs:        Based on provider
Vector DB:        Separate service
Monitoring:       LangSmith ($39/mo+)

Typical Monthly:  $50-500+
- OpenAI API: $20-200
- Vector DB: $20-100
- LangSmith: $39-299

LlamaIndex Costs

Framework:        Free (open source)
LLM Costs:        Based on provider
Vector DB:        Separate service
Cloud Service:    LlamaCloud (coming)

Typical Monthly:  $40-400+
- OpenAI API: $20-200
- Vector DB: $20-100
- No monitoring fee

Integration Ecosystems

LangChain Integrations (500+)

LLM Providers:

  • OpenAI, Anthropic, Google, Cohere, Hugging Face
  • Replicate, Together AI, Ollama, Custom models

Vector Databases:

  • Pinecone, Weaviate, Qdrant, Chroma, Milvus
  • Redis, Elasticsearch, PostgreSQL + pgvector

Tools & Services:

  • Web search, APIs, databases, file systems
  • Zapier, IFTTT, custom tools

LlamaIndex Integrations (100+)

LLM Providers:

  • OpenAI, Anthropic, Google, Cohere
  • Hugging Face, Replicate, Custom models

Vector Databases:

  • Pinecone, Weaviate, Qdrant, Chroma
  • PostgreSQL, MongoDB, Redis

Data Connectors:

  • Notion, Google Drive, Slack, Discord
  • Databases, APIs, file formats

Agent Capabilities

LangChain Agents

โœ… Agent Types

  • Zero-shot ReAct
  • Structured tool chat
  • OpenAI functions
  • Plan-and-execute
  • Custom agents

โœ… Tool Integration

  • 50+ built-in tools
  • Custom tool creation
  • Tool calling optimization
  • Multi-tool coordination

โœ… Memory Management

  • Conversation buffer
  • Summary memory
  • Entity memory
  • Vector store memory

LlamaIndex Agents

โš ๏ธ Basic Agent Support

  • Query engine tools
  • OpenAI function calling
  • ReAct agent
  • Limited customization

โš ๏ธ Tool Integration

  • Query engines as tools
  • Custom functions
  • Limited built-in tools

โš ๏ธ Memory

  • Chat history
  • Basic context window
  • No advanced memory patterns

Migration Strategies

From LangChain to LlamaIndex

When to migrate:

  • Primarily using retrieval
  • Need better RAG performance
  • Want simpler codebase
  • Focus on search accuracy

Migration steps:

  1. Replace chains with query engines
  2. Update document loaders
  3. Simplify retrieval logic
  4. Optimize indexes

From LlamaIndex to LangChain

When to migrate:

  • Need complex agents
  • Require more integrations
  • Building workflows
  • Need advanced memory

Migration steps:

  1. Convert indexes to vector stores
  2. Replace query engines with chains
  3. Add agent capabilities
  4. Integrate additional tools

Real-World Use Cases

LangChain Success Stories

Customer Support Bot

  • Multi-turn conversations
  • Tool integration
  • Complex routing
  • Memory management
  • Cost: $200/mo

Business Automation

  • Multi-step workflows
  • API orchestration
  • Decision making
  • Error handling
  • Cost: $500/mo

LlamaIndex Success Stories

Legal Document Search

  • 10M+ documents indexed
  • Sub-second queries
  • High accuracy
  • Cost-effective
  • Cost: $300/mo

Medical Knowledge Base

  • Structured data query
  • Citation tracking
  • Multi-modal search
  • HIPAA compliant
  • Cost: $400/mo

Community & Support

LangChain Community

  • GitHub Stars: 80,000+
  • Discord Members: 40,000+
  • Weekly Downloads: 2M+
  • Contributors: 2,000+
  • Documentation: Extensive
  • Tutorials: Abundant

LlamaIndex Community

  • GitHub Stars: 30,000+
  • Discord Members: 15,000+
  • Weekly Downloads: 500K+
  • Contributors: 500+
  • Documentation: Excellent
  • Tutorials: Growing

Development Experience

LangChain DX

Pros:

  • Flexible architecture
  • Rich ecosystem
  • Extensive docs
  • Active community

Cons:

  • Steep learning curve
  • API changes frequently
  • Can be overwhelming
  • Verbose code

LlamaIndex DX

Pros:

  • Intuitive for RAG
  • Clean API
  • Great defaults
  • Fast to start

Cons:

  • Limited for non-RAG
  • Smaller ecosystem
  • Fewer examples
  • Less flexibility

Draftโ€™n Run Advantage

๐Ÿš€ Get Best of Both with Draft'n Run

  • Visual Builder: No code needed for either approach
  • LangChain + LlamaIndex: Use both frameworks together
  • Optimized RAG: Best-in-class retrieval performance
  • Advanced Agents: Complex workflows made simple
  • Production Monitoring: Built-in observability
  • Cost Optimization: Automatic token management
Try Draft'n Run Free โ†’

Decision Framework

FactorLangChainLlamaIndexDraftโ€™n Run
RAG Focusโœ…โœ…โœ…โœ…โœ…
Agent Workflowsโœ…โœ…โš ๏ธโœ…โœ…
Learning CurveโŒโœ…โœ…โœ…
Flexibilityโœ…โœ…โœ…โœ…โœ…
Production Readyโœ…โœ…โœ…โœ…
Visual DevelopmentโŒโŒโœ…โœ…
Monitoring๐Ÿ’ฐโš ๏ธโœ…โœ…

Frequently Asked Questions

Can I use both LangChain and LlamaIndex together?

Yes! They can work together. Use LlamaIndex for indexing and retrieval, then pass results to LangChain chains or agents for processing and workflow orchestration.

Which is better for beginners?

LlamaIndex is easier to start with if youโ€™re building RAG applications. LangChain has more concepts to learn but offers greater flexibility once mastered.

Which has better RAG performance?

LlamaIndex typically outperforms LangChain for RAG tasks with faster queries (0.8s vs 1.2s) and better retrieval accuracy (92% vs 85%).

Can LlamaIndex handle complex agent workflows?

LlamaIndex has basic agent support but isnโ€™t designed for complex multi-step agent workflows. For advanced agents, LangChain or Draftโ€™n Run are better choices.

Which is more cost-effective?

LlamaIndex tends to be more token-efficient for RAG tasks. LangChain can be more expensive due to agent loops but offers more functionality. Both are free frameworks - costs come from LLM and infrastructure usage.

Code Examples Side-by-Side

Simple RAG Implementation

LangChain:

from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader

# Load and split documents
loader = TextLoader("data.txt")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=200
)
splits = text_splitter.split_documents(documents)

# Create vector store
vectorstore = Chroma.from_documents(
    documents=splits,
    embedding=OpenAIEmbeddings()
)

# Create QA chain
qa = RetrievalQA.from_chain_type(
    llm=OpenAI(),
    retriever=vectorstore.as_retriever()
)

# Query
response = qa.run("Your question here")

LlamaIndex:

from llama_index import VectorStoreIndex, SimpleDirectoryReader

# Load documents (auto-chunking)
documents = SimpleDirectoryReader('data').load_data()

# Create index (one line!)
index = VectorStoreIndex.from_documents(documents)

# Query
query_engine = index.as_query_engine()
response = query_engine.query("Your question here")

Final Recommendation

For RAG-Focused Applications: LlamaIndex offers superior performance, simpler code, and faster development.

For Complex AI Workflows: LangChain provides more flexibility, better agent support, and richer integrations.

For Production Applications: Draftโ€™n Run combines both with visual development, monitoring, and enterprise features.


More Platform Comparisons:

Alternative Platform Guides:

Draftโ€™n Run Platform:

Build AI Workflows in Minutes, Not Months!

Deploy production-ready AI workflows with complete transparency and control.
Start building today! Start free trial โ†’