Quick Verdict: LangChain vs LlamaIndex
Choose LangChain if: You need a flexible framework for building diverse AI applications with complex agent workflows.
Choose LlamaIndex if: Youโre focused on building RAG (Retrieval-Augmented Generation) applications with document search.
Choose Draftโn Run if: You want both capabilities with visual development and production-ready monitoring.
Core Philosophy Differences
| Aspect | LangChain | LlamaIndex | Winner |
|---|---|---|---|
| Primary Focus | General AI apps | RAG & search | Depends on need |
| Architecture | Chains & agents | Indexes & queries | Different approaches |
| Learning Curve | Steep | Moderate | ๐ LlamaIndex |
| RAG Capabilities | Good | Excellent | ๐ LlamaIndex |
| Agent Support | Excellent | Basic | ๐ LangChain |
| Integrations | 500+ | 100+ | ๐ LangChain |
| Documentation | Comprehensive | Very good | ๐ LangChain |
| Performance | Good | Optimized for RAG | ๐ LlamaIndex |
| Community Size | Very large | Growing | ๐ LangChain |
| Production Ready | โ Yes | โ Yes | ๐ค Tie |
Implementation Comparison
LangChain: Flexible Chain Building
from langchain.chains import RetrievalQA
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
# Create embeddings
embeddings = OpenAIEmbeddings()
# Create vector store
vectorstore = Pinecone.from_documents(
documents,
embeddings,
index_name="my-index"
)
# Create retrieval chain
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vectorstore.as_retriever(),
return_source_documents=True
)
# Query
result = qa_chain({"query": "What is LangChain?"})
print(result["result"])
LlamaIndex: Index-Centric Approach
from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores import PineconeVectorStore
from llama_index.storage.storage_context import StorageContext
# Load documents
documents = SimpleDirectoryReader('data').load_data()
# Create vector store
vector_store = PineconeVectorStore(
index_name="my-index"
)
# Create storage context
storage_context = StorageContext.from_defaults(
vector_store=vector_store
)
# Create index
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context
)
# Query
query_engine = index.as_query_engine()
response = query_engine.query("What is LlamaIndex?")
print(response)
RAG Capabilities Deep Dive
LangChain RAG Features
โ Retrieval Methods
- Vector similarity search
- Keyword search
- Hybrid search
- Multi-query retrieval
- Contextual compression
โ Document Processing
- Multiple loaders
- Text splitters
- Metadata extraction
- Document transformers
โ ๏ธ Indexing
- Manual setup required
- External vector DB needed
- Custom configuration
- Good flexibility
LlamaIndex RAG Features
โ Advanced Indexing
- Tree index
- List index
- Vector store index
- Graph index
- Keyword table index
โ Query Optimization
- Router query engine
- Sub-question query engine
- Transform query engine
- Multi-step query engine
โ Built-in RAG Patterns
- Sentence window retrieval
- Auto-merging retrieval
- Recursive retrieval
- Small-to-big retrieval
Use Case Suitability
Best for LangChain:
๐ค Complex Agent Workflows
- Multi-step reasoning
- Tool-using agents
- Autonomous systems
- Decision-making chains
๐ Integration-Heavy Applications
- API orchestration
- Multi-tool coordination
- External service integration
- Workflow automation
๐ฌ Conversational AI
- Chatbots with memory
- Multi-turn conversations
- Context management
- Dialogue systems
Best for LlamaIndex:
๐ Document Q&A Systems
- Knowledge base search
- Document analysis
- Information retrieval
- Research assistants
๐ Enterprise Search
- Internal documentation
- Customer support
- Legal document search
- Medical records query
๐ Structured Data Query
- SQL + semantic search
- Graph data exploration
- Multi-modal retrieval
- Analytics interfaces
Performance Benchmarks
| Metric | LangChain | LlamaIndex |
|---|---|---|
| RAG Query Speed | 1.2s average | 0.8s average |
| Indexing Speed | Standard | Optimized |
| Memory Usage | Higher | Lower |
| Token Efficiency | Good | Excellent |
| Retrieval Accuracy | 85% | 92% |
| Setup Time | 1-2 hours | 30-45 min |
Pricing Comparison
LangChain Costs
Framework: Free (open source)
LLM Costs: Based on provider
Vector DB: Separate service
Monitoring: LangSmith ($39/mo+)
Typical Monthly: $50-500+
- OpenAI API: $20-200
- Vector DB: $20-100
- LangSmith: $39-299
LlamaIndex Costs
Framework: Free (open source)
LLM Costs: Based on provider
Vector DB: Separate service
Cloud Service: LlamaCloud (coming)
Typical Monthly: $40-400+
- OpenAI API: $20-200
- Vector DB: $20-100
- No monitoring fee
Integration Ecosystems
LangChain Integrations (500+)
LLM Providers:
- OpenAI, Anthropic, Google, Cohere, Hugging Face
- Replicate, Together AI, Ollama, Custom models
Vector Databases:
- Pinecone, Weaviate, Qdrant, Chroma, Milvus
- Redis, Elasticsearch, PostgreSQL + pgvector
Tools & Services:
- Web search, APIs, databases, file systems
- Zapier, IFTTT, custom tools
LlamaIndex Integrations (100+)
LLM Providers:
- OpenAI, Anthropic, Google, Cohere
- Hugging Face, Replicate, Custom models
Vector Databases:
- Pinecone, Weaviate, Qdrant, Chroma
- PostgreSQL, MongoDB, Redis
Data Connectors:
- Notion, Google Drive, Slack, Discord
- Databases, APIs, file formats
Agent Capabilities
LangChain Agents
โ Agent Types
- Zero-shot ReAct
- Structured tool chat
- OpenAI functions
- Plan-and-execute
- Custom agents
โ Tool Integration
- 50+ built-in tools
- Custom tool creation
- Tool calling optimization
- Multi-tool coordination
โ Memory Management
- Conversation buffer
- Summary memory
- Entity memory
- Vector store memory
LlamaIndex Agents
โ ๏ธ Basic Agent Support
- Query engine tools
- OpenAI function calling
- ReAct agent
- Limited customization
โ ๏ธ Tool Integration
- Query engines as tools
- Custom functions
- Limited built-in tools
โ ๏ธ Memory
- Chat history
- Basic context window
- No advanced memory patterns
Migration Strategies
From LangChain to LlamaIndex
When to migrate:
- Primarily using retrieval
- Need better RAG performance
- Want simpler codebase
- Focus on search accuracy
Migration steps:
- Replace chains with query engines
- Update document loaders
- Simplify retrieval logic
- Optimize indexes
From LlamaIndex to LangChain
When to migrate:
- Need complex agents
- Require more integrations
- Building workflows
- Need advanced memory
Migration steps:
- Convert indexes to vector stores
- Replace query engines with chains
- Add agent capabilities
- Integrate additional tools
Real-World Use Cases
LangChain Success Stories
Customer Support Bot
- Multi-turn conversations
- Tool integration
- Complex routing
- Memory management
- Cost: $200/mo
Business Automation
- Multi-step workflows
- API orchestration
- Decision making
- Error handling
- Cost: $500/mo
LlamaIndex Success Stories
Legal Document Search
- 10M+ documents indexed
- Sub-second queries
- High accuracy
- Cost-effective
- Cost: $300/mo
Medical Knowledge Base
- Structured data query
- Citation tracking
- Multi-modal search
- HIPAA compliant
- Cost: $400/mo
Community & Support
LangChain Community
- GitHub Stars: 80,000+
- Discord Members: 40,000+
- Weekly Downloads: 2M+
- Contributors: 2,000+
- Documentation: Extensive
- Tutorials: Abundant
LlamaIndex Community
- GitHub Stars: 30,000+
- Discord Members: 15,000+
- Weekly Downloads: 500K+
- Contributors: 500+
- Documentation: Excellent
- Tutorials: Growing
Development Experience
LangChain DX
Pros:
- Flexible architecture
- Rich ecosystem
- Extensive docs
- Active community
Cons:
- Steep learning curve
- API changes frequently
- Can be overwhelming
- Verbose code
LlamaIndex DX
Pros:
- Intuitive for RAG
- Clean API
- Great defaults
- Fast to start
Cons:
- Limited for non-RAG
- Smaller ecosystem
- Fewer examples
- Less flexibility
Draftโn Run Advantage
๐ Get Best of Both with Draft'n Run
- Visual Builder: No code needed for either approach
- LangChain + LlamaIndex: Use both frameworks together
- Optimized RAG: Best-in-class retrieval performance
- Advanced Agents: Complex workflows made simple
- Production Monitoring: Built-in observability
- Cost Optimization: Automatic token management
Decision Framework
| Factor | LangChain | LlamaIndex | Draftโn Run |
|---|---|---|---|
| RAG Focus | โ | โ โ | โ โ |
| Agent Workflows | โ โ | โ ๏ธ | โ โ |
| Learning Curve | โ | โ | โ โ |
| Flexibility | โ โ | โ | โ โ |
| Production Ready | โ | โ | โ โ |
| Visual Development | โ | โ | โ โ |
| Monitoring | ๐ฐ | โ ๏ธ | โ โ |
Frequently Asked Questions
Can I use both LangChain and LlamaIndex together?
Yes! They can work together. Use LlamaIndex for indexing and retrieval, then pass results to LangChain chains or agents for processing and workflow orchestration.
Which is better for beginners?
LlamaIndex is easier to start with if youโre building RAG applications. LangChain has more concepts to learn but offers greater flexibility once mastered.
Which has better RAG performance?
LlamaIndex typically outperforms LangChain for RAG tasks with faster queries (0.8s vs 1.2s) and better retrieval accuracy (92% vs 85%).
Can LlamaIndex handle complex agent workflows?
LlamaIndex has basic agent support but isnโt designed for complex multi-step agent workflows. For advanced agents, LangChain or Draftโn Run are better choices.
Which is more cost-effective?
LlamaIndex tends to be more token-efficient for RAG tasks. LangChain can be more expensive due to agent loops but offers more functionality. Both are free frameworks - costs come from LLM and infrastructure usage.
Code Examples Side-by-Side
Simple RAG Implementation
LangChain:
from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import TextLoader
# Load and split documents
loader = TextLoader("data.txt")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(documents)
# Create vector store
vectorstore = Chroma.from_documents(
documents=splits,
embedding=OpenAIEmbeddings()
)
# Create QA chain
qa = RetrievalQA.from_chain_type(
llm=OpenAI(),
retriever=vectorstore.as_retriever()
)
# Query
response = qa.run("Your question here")
LlamaIndex:
from llama_index import VectorStoreIndex, SimpleDirectoryReader
# Load documents (auto-chunking)
documents = SimpleDirectoryReader('data').load_data()
# Create index (one line!)
index = VectorStoreIndex.from_documents(documents)
# Query
query_engine = index.as_query_engine()
response = query_engine.query("Your question here")
Final Recommendation
For RAG-Focused Applications: LlamaIndex offers superior performance, simpler code, and faster development.
For Complex AI Workflows: LangChain provides more flexibility, better agent support, and richer integrations.
For Production Applications: Draftโn Run combines both with visual development, monitoring, and enterprise features.
Related Comparisons & Resources
More Platform Comparisons:
- Draftโn Run vs n8n - AI-first vs general automation
- Make vs Zapier vs Draftโn Run - Full platform comparison
- LangChain vs LlamaIndex - RAG framework comparison
- CrewAI vs LangChain - Multi-agent frameworks
Alternative Platform Guides:
- LangChain Alternatives - LangChain alternatives
- Zapier Alternatives - Zapier alternatives for AI
- Make Alternatives - Make alternatives
- n8n Alternatives - n8n alternatives guide
Draftโn Run Platform:
- AI Workflow Builder - Visual workflow builder
- AI Chatbot Platform - Build production chatbots
- AI Automation - End-to-end automation
- Integration Library - 100+ integrations
- Pricing - See plans
- Request Demo - Get started
Build AI Workflows in Minutes, Not Months!
Deploy production-ready AI workflows with complete transparency and control.
Start building today! Start free trial โ